Some results
We apply the methods to the so-called double well potential model:

dXs = —p(X3 — puXs)ds 4 od By

which has ergodic log-density given by —(2p/0%)(x*/4 — ux?/2).
We've simulated 1000 data with interobservation times 1, and
(p, p,0) =(0.1,2,0.5)




MCMC summaries M =5
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MCMC summaries M = 50
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Posterior densities
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Summary

We have fully addressed likelihood-based inference for
discretey-observed diffusions when the diffusion coefficient is
constant and known.

» Phrased problem as missing data

» Formulated a generic DA

» Probabilistically represented the distribution of missing data

» Developed MC methods for simulating efficiently from the

missing data distribution

We can try to export this methodology to the general case. Before
this, we address the efficiency of the diffusion bridge sampling
methodology.



Global sampling of diffusion bridges: problems

The approach we suggested for simulation of diffusion bridges is
based on global algorithms, e.g IS or its MCMC variant, the
independence MH algorithm.

Apriori, this is expected to scale badly with the time separation
between the end points; exponentially bad typically.

We study a tractable example to get an understanding



The Ornstein-Uhlenbeck bridge

Recall the OU process (9). The corresponsding bridge process
which travels from x to y at time T is given, working directly from
the h-transform (44) or even from first principles since we deal
with a Gaussian process, by

206 (T—3) T
dXs = { a(Xs — ) + 1 o 2a(T—5) (y—e (Xs — ) u)} ds

+ odBs
(52)

Note that as ae — 0 we obtain, as expected, the BB (30).



To avoid unnecessary notation, we focus on the case u = 0,0 =1,
a > 0, and the ending point is at the stationary mean, y = 0. In
this simplified setting, the bridge is given by

dXs = OZX mds + dBS y XO =X

Instead, we will propose from BB

X,
dX; = —=———ds + dB,
T—s

and weight with

W(X) = wexp {2(—1/T—|— 2ae—2aT/(1 _ e—2aT))}

2 T
X exp {(j(x2 +T) O;/ des}
0



Note the useful representation of a BB(0, x, T,0) X, in terms of a
standard BB(0,0,1,0) Z:

Xe=VTZyr+(1—5s/T)x,s€[0,T] (53)

thus
2

T 27 £ s 5
/ X2ds = TZ1 + —5-x +2VTx2,
0

where the Z’s are O(1) statistics,

T T s
Z :/ Z%rds 2 :/ (1-5)Zyrds
0 0



Thus, putting everything together we get that:
Therefore, we have

v =i

x2 (1 a?T? 14 e 2T aT
exp{—z(_l_—i- 3 _al—e—207>_2( Zl—l)—azﬁng}

aT 5
X exp {—2(a21 —-1)—« ﬁsz}

» aa— 0, w—1.

» Starting in equilibrium, x = 0: for large T the weight of a
path will either be exponentially small, if ®Z; > 1 or
exponentially large, if aZ; < 1

» Starting out of equilibrium, take T = 1: for large x we have a
similar issue
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lllustration: global sampling OU bridge out of equilibrium
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Local Path Sampling

We can construct MCMC algorithms which operate on the path
space for simulating for path measures. Particularly relevant for
bridge and other conditioned diffusion measures.

Theoretically, this has generated interesting advances in SPDE
theory, see for example [Hairer et al., 2007]. For a recent article on
these algorithms, see for example [Beskos et al., 2008b] (in fact
the quadratic variation identity plays an important role in this field
as well).

Actually, some of the algorithms can be justified in an elementary
way, without resorting to SPDEs to justify them.



Random walk sampling of diffusion bridges

Recall that we wish to sample from (47), or equivalently from the
law (49). Global sampling uses proposals from the dominating
Brownian bridge measure W(7-%.¥)

Note that, the transformation X — X’, where
Xe=(1—5s/T)x+(s/T)y
+p(Xs— 1 —s/T)x—(s/T)y)+V1—p*W;s (54)
selo,T], WNW(T’O’O),WJ_X, p€[0,1]

is invariant w.r.t W(T-x¥) To see this, note that it if
X ~ W(Tx¥) then X is a , with the same mean

and covariance as X.

Note the special cases p = 0,1



In fact, the transformation is also reversible w.r.t W(T*¥) 'in the
sense that the joint measure on X and X’ is symmetric. Then, the
following algorithm yields a MH-MC on the path space which has
P(T%¥) as a limiting distribution.

1. Start with a path Xj
2. Propose X' from (54)

3. Accept X" w.p. G(X')/G(X), otherwise stay at the current
path

4. Goto 2

Heuristics about why this scheme is valid



lllustration: local sampling OU bridge out of equilibrium

6 T

T
Initial Path

Mean Target Path|
Sampled Paths

2 I I I I I I I I I




Part V:MC-based likelihood inference for
discretely-observed reducible diffusions

v

Collapse of basic DA when estimating volatility

> A toy example illustration

v

Reducible diffusions

v

Path transformations and efficient DA

To avoid excessive notation we focus on time-homogeneous
diffusions



Framework

The problem can be appreciated even at the simplest case of
unknown diffusion coefficient:

with 8 and o unknown.
Replicating the previous approach we immediately run into a

serious problem: existence of parameter-free dominating measure
for DA: (42)



Therefore, we cannot design a DA which operates on path spaces.
So what would happen if we tried the previous DA scheme on a
discretization of the model?



A toy example

Let V; be a Brownian motion with infinitesimal variance o2.

Assume that Vy = 0. Suppose that V4 = y is observed.

Vi ~ N(0,0?)

Thus, given the prior 0=2 ~ Gamma(1,1),
the posterior for o2 is just

Gamma(3/2,1 + y?/2).



Data augmentation for the toy example

Suppose now for illustration, that the full likelihood is unavailable
and data augmentation was necessary. We impute

Vi/my Voyms s Vim—1y/m -
We use the Gibbs sampling algorithm which iterates the following
loop:

1. Given o2 impute a discretised Brownian bridge with
infinitesimal variance o2 hitting V4 = y at time 1.

2. Given Vo, Viym, Voyms - -+ Vim—1)/m, Vi draw o2 from
Gamma(l+ M/2,1+ MX,//2)

where %y, denote the quadratic variation:

M

Ty = Z(VI/M — Viicnym)? -
i—1



More on the toy example

The following result shows that for this example the convergence
time of the algorithm is O(M) as M becomes large.

Let 7(M) be the inverse variance process for the algorithm which
imputes M — 1 points. It can be shown that by speeding up 7(M)
by a factor of M /4, T[(t’\,\//’,)/4] converges weakly as M — oo to a
Langevin diffusion with stationary distribution given by the
posterior.



Theorem
[Roberts and Stramer, 2001] Let PM) pe the law of T[(t’,\\/’/,)/“

pM) — p(e0)
where P() s the law of the diffusion

dée = &{5/4 — &(1/2 + X?/4)dt + dB,} .

The convergence time is thus O(M).
¢ has stationary distribution Gamma(3/2,1 + X2/2).



The fact that the algorithm is at least O(M) can be seen from the
generic characterization of the convergence of DA in (40). Taking
h(t) = 7, we have that

LM .
1+Mx, /2)? large
% ~ 1—(442y%)-

v=1-
T2 M
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Efficient DA using reparametrizations

An efficient DA with convergence time O(1) in the amount of
imputation can be implemented.

In fact, it is based on a valid DA which is based on path
imputation (i.e M = o).

The problem we face here arises in many other contexts, and the
solution we will pursue is an instance of a general methodology,
the so-called non-centred parameterizations, see
[Papaspiliopoulos et al., 2003]



For diffusions, it will be achieved using the tools we've already
used: the transformation to unit diffusion coefficient (33), and the
tilting of BB paths (53), together with a general trick for obtaining
laws of transformed processes.



Reducible diffusions

In multivariate setting if n : RY — R"

dn(V) = An(V)ds + Vn(V)o(V)dB

so we need 7 s.t:

Vn(VF(V)(Vn(V))" =1

A sufficient condition when d = m = n, which for example in
[Ait-Sahalia, 2008] is given as the definition of reducible diffusions,
is to obtain: Vn(V)o(V) = 1.



The conditions under which this holds are transparent when o~}

exists.

It is then easy to see that dnk/dv; = [0~ 1],; and since
Oznk/(?\/j@v/ should yield the same result regardless of the order of
differentiation, we get the necessary condition:

Aoy _ o Mu

v, ov;

This is also sufficient, since we can define nx = [[o7]4;dv; (any j
can be chosen). This function then solves the desired system. The
conditions and proof when ¢ is not invertible are more intricate.
[Ait-Sahalia, 2008] only proves this special case.

For intuition consider an SV model for d = 2 with 015 = 01 = 0.



